18 resultados para MTHFR

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Elevated plasma homocysteine level has been associated with increased risk for cardiovascular and cerebrovascular disease. Variation in the levels of this amino acid has been shown to be due to nutritional status and methylenetetrahydrofolate reductase (MTHFR) genotype. METHODS: Under a case-control design we compared fasting levels of homocysteine and MTHFR genotypes in groups of subjects consisting of stroke, vascular dementia (VaD), and Alzheimer disease patients and normal controls from Northern Ireland. RESULTS: A significant increase in plasma homocysteine was observed in all 3 disease groups compared with controls. This remained significant after allowance for confounding factors (age, sex, hypertension, cholesterol, smoking, creatinine, and nutritional measures). MTHFR genotype was not found to influence homocysteine levels, although the T allele was found to increase risk for VaD and perhaps dementia after stroke. CONCLUSIONS: We report that moderately high plasma levels of homocysteine are associated with stroke, VaD, and Alzheimer disease. This is not due to vascular risk factors, nutritional status, or MTHFR genotype

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Elevated homocysteine is associated with ischaemic heart disease (IHD). The C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene results in reduced MTHFR enzyme activity and reduced methylation of homocysteine to methionine resulting in mild hyperhomocysteinaemia. Case-control association studies of the role of the C677T MTHFR polymorphism in IHD have produced conflicting results. We therefore used newly described family-based association tests to investigate the role of this polymorphism in IHD, in a well-defined population. Methods: A total of 352 individuals from 129 families (discordant sibships and parent-child trios) were recruited. Linkage disequilibrium between the polymorphism and IHD was tested for using the combined transmission disequilibrium test (TDT)/sib-TDT and pedigree disequilibrium test (PDT). Homocysteine levels were measured. Results: Both the TDT/sib-TDT and PDT analyses found a significantly reduced transmission of the T allele to affected individuals (P=0.016 and P=0.021). There was no significant difference in homocysteine levels between affected and unaffected siblings. TT homozygotes had mean homocysteine levels significantly higher than those of TC heterozygotes (P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Methylenetetrahydrofolate reductase (MTHFR; EC 1.7.99.5) supplies the folate needed for the metabolism of homocysteine. A reduction in MTHFR activity, as occurs in the homozygous state for the 677C-->T (so-called thermolabile) enzyme variant (TT genotype), is associated with an increase in plasma total homocysteine (tHcy). OBJECTIVE: In vitro studies suggest that the reduced activity of thermolabile MTHFR is due to the inappropriate loss of its riboflavin cofactor. We investigated the hypothesis that MTHFR activity in the TT genotype group is particularly sensitive to riboflavin status. DESIGN: We studied tHcy and relevant B-vitamin status by MTHFR genotype in a cross-sectional study of 286 healthy subjects aged 19-63 y (median: 27 y). The effect of riboflavin status was examined by dividing the sample into tertiles of erythrocyte glutathionine reductase activation coefficient, a functional index of riboflavin status. RESULTS: Lower red blood cell folate (P = 0.0001) and higher tHcy (P = 0.0082) concentrations were found in the TT group than in the heterozygous (CT) or wild-type (CC) groups. However, these expected relations in the total sample were driven by the TT group with the lowest riboflavin status, whose mean tHcy concentration (18.09 micromol/L) was almost twice that of the CC or CT group. By contrast, adequate riboflavin status rendered the TT group neutral with respect to tHcy metabolism. CONCLUSIONS: The high tHcy concentration typically associated with homozygosity for the 677C-->T variant of MTHFR occurs only with poor riboflavin status. This may have important implications for governments considering new fortification policies aimed at the prevention of diseases for which this genotype is associated with increased risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To assess the role of plasma total homocysteine (tHcy) concentrations and homozygosity for the thermolabile variant of the methylenetetrahydrofolate reductase (MTHFR) C677T gene as risk factors for retinal vascular occlusive disease.

Design: Retinal vein occlusion (RVO) is an important cause of vision loss. Early meta-analyses showed that tHcy was associated with an increased risk of RVO, but a significant number of new studies have been published. Participants and/or Controls: RVO patients and controls.

Methods: Data sources included MEDLINE, Web of Science, and PubMed searches and searching reference lists of relevant articles and reviews. Reviewers searched the databases, selected the studies, and then extracted data. Results were pooled quantitatively using meta-analytic methods.

Main Outcome Measures: tHcy concentrations and MTHFR genotype.

Results: There were 25 case-control studies for tHcy (1533 cases and 1708 controls) and 18 case-control studies for MTHFR (1082 cases and 4706 controls). The mean tHcy was on average 2.8 mol/L (95% confidence
interval [CI], 1.8 –3.7) greater in the RVO cases compared with controls, but there was evidence of between-study heterogeneity (P0.001, I2 93%). There was funnel plot asymmetry suggesting publication bias. There was no evidence of association between homozygosity for the MTHFR C677T genotype and RVO (odds ratio [OR] 1.20; 95% CI, 0.84–1.71), but again marked heterogeneity (P 0.004, I2 53%) was observed.

Conclusions: There was some evidence that elevated tHcy was associated with RVO, but not homozygosity for the MTHFR C677T genotype. Both analyses should be interpreted cautiously because of marked heterogeneity between the study estimates and possible effect of publication bias on the tHcy findings.

Financial Disclosure(s): The author(s) have no proprietary or commercial interest in any materials discussed in this article.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elevation in plasma homocysteine concentration has been associated with vascular disease and neural tube defects. Methionine synthase is a vitamin B(12)-dependent enzyme that catalyses the remethylation of homocysteine to methionine. Therefore, defects in this enzyme may result in elevated homocysteine levels. One relatively common polymorphism in the methionine synthase gene (D919G) is an A to G transition at bp 2,756, which converts an aspartic acid residue believed to be part of a helix involved in co-factor binding to a glycine. We have investigated the effect of this polymorphism on plasma homocysteine levels in a working male population (n = 607) in which we previously described the relationship of the C677T "thermolabile" methylenetetrahydrofolate reductase (MTHFR) polymorphism with homocysteine levels. We found that the methionine synthase D919G polymorphism is significantly (P = 0.03) associated with homocysteine concentration, and the DD genotype contributes to a moderate increase in homocysteine levels across the homocysteine distribution (OR = 1.58, DD genotype in the upper half of the homocysteine distribution, P = 0.006). Unlike thermolabile MTHFR, the homocysteine-elevating effects of the methionine synthase polymorphism are independent of folate and B(12) levels; however, the DD genotype has a larger homocysteine-elevating effect in individuals with low B(6) levels. This polymorphism may, therefore, make a moderate, but significant, contribution to clinical conditions that are associated with elevated homocysteine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mild hyperhomocysteinemia is accepted as a risk factor for premature cardiovascular disease. In a population with a high prevalence of cardiovascular disease, we screened a group of clinically healthy working men aged 30-49 y (n = 509) for plasma homocysteine and 5,10-methylene tetrahydrofolate reductase (MTHFR) genotype status. Those with mildly elevated homocysteine concentrations (> or = 8.34 micromol/L) were selected for intervention. In a randomized, factorial-design, controlled trial we assessed the effects of B-group vitamins and antioxidant vitamin supplementation on homocysteine concentrations. The 132 men were randomly assigned to one of four groups: supplementation with B-group vitamins alone (1 mg folic acid, 7.2 mg pyridoxine, and 0.02 mg cyanocobalamin), antioxidant vitamins alone (150 mg ascorbic acid, 67 mg RRR-alpha-tocopherol, and 9 mg beta-carotene), B-group vitamins with antioxidant vitamins, or placebo. Intervention was double-blind. A total of 101 men completed the 8-wk intervention. When homocysteine concentrations were analyzed by group, significant (P <0.001) decreases (32.0% and 30.0%, respectively) were observed in both groups receiving B-group vitamins either with or without antioxidants. The effect of B-group vitamins alone over 8 wk was a reduction in homocysteine concentrations of 27.9% (95% CI: 22.0%, 33.3%; P <0.001) whereas antioxidants alone produced a nonsignificant increase of 5.1% (95% CI: -2.8%, 13.6%; P = 0.21). There was no evidence of any interaction between the two groups of vitamins. The effect of B-group vitamin supplementation seemed to depend on MTHFR genotype. Supplementation with the B-group vitamins with or without antioxidants reduced homocysteine in the men with mildly elevated concentrations, and hence may be effective in reducing cardiovascular risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mild hyperhomocysteinaemia is a major risk factor for vascular disease and neural tube defects (NTDs), conferring an approximately three-fold relative risk for each condition. It has several possible causes: heterozygosity for rare loss of function mutations in the genes for 5,10-methylene tetrahydrofolate reductase (MTHFR) or cystathionine-beta-synthase (CBS); dietary insufficiency of vitamin co-factors B6, B12 or folates; or homozygosity for a common 'thermolabile' mutation in the MTHFR gene which has also been associated with vascular disease and NTDs. We quantified the contribution of the thermolabile mutation to the hyperhomocysteinaemic phenotype in a working male population (625 individuals). Serum folate and vitamin B12 concentrations were also measured and their relationship with homocysteine status and MTHFR genotype assessed. The homozygous thermolabile genotype occurred in 48.4, 35.5, and 23.4% of the top 5, 10, and 20% of individuals (respectively) ranked by plasma homocysteine levels, compared with a frequency of 11.5% in the study population as a whole, establishing that the mutation is a major determinant of homocysteine levels at the upper end of the range. Serum folate concentrations also varied with genotype, being lowest in thermolabile homozygotes. The MTHFR thermolabile genotype should be considered when population studies are designed to determine the effective homocysteine-lowering dose of dietary folate supplements, and when prophylactic doses of folate are recommended for individuals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elevated plasma homocysteine level has been associated with increased risk for cardiovascular and cerebrovascular disease. Variation in the levels of this amino acid has been shown to be due to nutritional status and methylenetetrahydrofolate reductase (MTHFR) genotype.